
International Journal of Heat and Mass Transfer 52 (2009) 2018–2025
Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt
Thermodynamically coupled heat and mass flows in a reaction-transport
system with external resistances

Yas�ar Demirel *

Department of Chemical and Biomolecular Engineering, University of Nebraska Lincoln, Lincoln, NE 68588, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 4 October 2008
Received in revised form 21 October 2008
Available online 30 December 2008

Keywords:
Balance equations
Reaction-transport systems
Thermodynamic coupling
Nonequilibrium thermodynamics
Heat of transport
0017-9310/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.ijheatmasstransfer.2008.10.030

* Tel.: +1 402 472 2745; fax: +1 402 472 6989.
E-mail address: ydemirel2@unl.edu
Considerable work has been published on mathematically coupled nonlinear differential equations by
neglecting thermodynamic coupling between heat and mass flows in reaction-transport systems. The
thermodynamic coupling refers that a flow occurs without or against its primary thermodynamic driving
force, which may be a gradient of temperature, or chemical potential, or reaction affinity. This study pre-
sents the modeling of thermodynamically coupled heat and mass flows of two components in a reaction-
transport system with external heat and mass transfer resistances. The modeling equations are based on
the linear nonequilibrium thermodynamics approach by assuming that the system is in the vicinity of
global equilibrium. The modeling equations lead to unique definitions of thermodynamic coupling (cross)
coefficients between heat and mass flows in terms of kinetic parameters and transport coefficients. These
newly defined parameters need to be determined to describe coupled reaction-transport systems. Some
representative numerical solutions obtained by MATLAB illustrate the effect of thermodynamic coupling
coefficients on the change of temperature and mass concentrations in time and space.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Considerable work has been published on mathematically cou-
pled nonlinear differential equations for reaction-transport sys-
tems in porous catalyst by neglecting the thermodynamic
coupling. Here the thermodynamic coupling refers that a flow
(i.e. heat or mass flow or a reaction velocity) occurs without its pri-
mary thermodynamic driving force, or opposite to the direction
imposed by its primary driving force. The principles of thermody-
namics allow the progress of a process without or against its pri-
mary driving force only if this process is coupled with another
spontaneous process. This is consistent with the statement of sec-
ond law, which states that a finite amount of organization may be
purchased at the expense of a greater amount of disorganization in
a series of coupled processes.

Thermodynamically coupled chemical reaction-transport sys-
tems control the behavior of many transport and rate processes
in physical, chemical and biological systems, and require a through
analysis accounting the induced flows by cross effects [1–9]. Many
published work, including some recent ones [10–12], on reaction-
diffusion systems mainly consider mathematically coupled nonlin-
ear differential relationships. More than 50 years ago, Turing [13]
demonstrated that a reaction-diffusion system with appropriate
nonlinear kinetics can cause instability in a homogeneous steady
state and generate stable concentration patterns. Also the thermo-
ll rights reserved.
dynamic coupling in the membranes of living cells plays major role
in the respiratory electron transport leading to synthesizing aden-
osine triphosphate [6,14,15]. Another important thermodynamic
coupling takes place between the hydrolysis of adenosine triphos-
phate and the molecular transport of substrates in active transport.
The coupling between a scalar process of the hydrolysis and a vec-
torial process of the mass flow creates the molecular pumps
responsible for uphill transport [1,14,15]. Therefore, incorporation
of thermodynamic coupling into the modeling of reaction-diffusion
systems, such as active transport, may be a vital step in describing
these complex biochemical cycles.

Two previous studies presented the modeling equations and
approximate solutions for reaction-transport systems with ther-
modynamic coupling between heat and mass flows [4] and be-
tween transport processes and chemical reaction [5] without
external resistances. This study presents the modeling equations
for thermodynamically coupled heat and mass flows in a three-
component system with an elementary chemical reaction and with
external transport resistances. Therefore, it is a through analysis
accounting the cross effects as well as external effects. The model-
ing is based on the linear nonequilibrium thermodynamics (LNET)
formulations by assuming that the system is in the vicinity of glo-
bal equilibrium (GE). The LNET formulation does not require the
detailed mechanism of the thermodynamic coupling [6,15]. The
modeling equations have produced some unique parameters re-
lated to thermodynamic couplings between heat and mass flows.
These parameters combine the kinetic parameters and transport
coefficients and control the cross effects. Some representative
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Nomenclature

ai parameters in Eq. (37)
A chemical affinity, J/mol
cp specific heat capacity, J/(kg K)
Da Damköhler number
DS effective diffusion coefficient for the substrate S, m2/s
DD coupling coefficient related to the Dufour effect, J m2/

(mol s)
DT coupling coefficient related to the thermal diffusion

(Soret) effect, mol/(m s K)
E activation energy of the chemical reaction, J/mol
h heat transfer coefficient, J/(m2 K)
hi partial enthalpy, J/kg
DHr reaction enthalpy, J/kg
HE excess specific enthalpy, J/kg
j diffusive mass flux, mol/(m2 s)
Jq conduction heat flux, W/m2

Jr volumetric reaction rate, mol/(m3 s)
k effective thermal conductivity, W/(m K)
kg external mass transfer coefficient, m/s
kv first order reaction rate constant, 1/s
k0 frequency in the Arrhenius equation, 1/s
L characteristic half thickness, m
Le Lewis number
Lik phenomenological coefficients
Lqr element of coupling coefficient between chemical reac-

tion and heat flow, mol K/(m2 s)
Lir element of coupling coefficient between chemical reac-

tion and mass flow of component i, mol2 K/(J m2 s)
n number of components
nr number of chemical reactions
Nu Nusselt number
Q�i heats of transport for component i, kJ/kg
R gas constant, J/(mol K)
Sh Sherwood number

t time, s
T temperature, K
wi mass fraction of component i
X thermodynamic force
z dimensionless distance

Greek letters
b thermicity group, dimensionless
b0S thermicity group for thermodynamically coupled pro-

cesses, dimensionless
e dimensionless parameter related to Soret effect in Eq.

(42)
U volumetric entropy generation rate, W/(m3 K)
c Arrhenius group, dimensionless
/ dimensionless temperature, Eq. (40)
u diffusivity ratios, Eq. (42)
l chemical potential, J/mol
h dimensionless composition, Eq. (40)
k relation in Eq. (16)
m stoichiometric coefficient
q density, kg/m3

s dimensionless time
x dimensionless parameter related to Dufour effect in Eq.

(42)

Subscripts
D Dufour
eq equilibrium
P product
q heat
r reaction
s surface
T thermal diffusion
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solutions of thermodynamically and mathematically coupled par-
tial differential equations are presented to illustrate the effects of
coupling on the behavior of temperature and mass concentrations
in time and space.

2. Modeling equations

We consider a single porous catalyst pellet that catalyzes the
elementary reaction mSS + mBB ? mPP with a first order kinetics
based on the S. The well known balance equations are

q
@wS

@t
¼ �r � jS þ mSJr ð1Þ

q
@wB

@t
¼ �r � jB þ mBJr ð2Þ

qcp
@T
@t
¼ �r � Jq þ ð�DHrÞJr þ q

X2

i¼1

X2

j¼1

HE
jjDjirwirwj ð3Þ

where

qDil ¼
X2

j¼1

Lijfjklkl; f jk ¼ djk þ
wk

wn
; lkl ¼

@lk

@wl

� �
T;P

ði; k; l ¼ 1;2Þ

and djk is the Kronecker delta, wi is the mass fraction of component i,
ji the vector of mass flow of component i, Jq is the vector of reduced
heat flow Jq ¼ q�

Pn
i¼1jihi, q is the total heat flow, hi is the partial

molar enthalpy of species i, and DHr is the heat of reaction, mi is
the stoichiometric coefficient, which is negative for reactants,
HE

ii ¼ ð@
2HE=@w2

i ÞT;P; ði ¼ 1;2Þ, and HE is the excess specific enthalpy
or heat of mixing, and the parameters Dij are the diffusion coeffi-
cients. The reaction velocity Jr in terms of frequency k0 and activa-
tion energy E for a first order elementary reaction is

Jr ¼ k0 exp � E
RT

� �
qS ð4Þ

By using the Fick and Fourier laws in one-dimensional domain
of y-direction and neglecting any thermodynamic couplings and
excess enthalpy effects, Eqs. (1)–(3) become

q
@wS

@t
¼ qDS

@2wS

@y2 þ mSJr ð5Þ

q
@wB

@t
¼ qDB

@2wB

@y2 þ mBJr ð6Þ

qcp
@T
@t
¼ k

@2T
@y2 þ ð�DHrÞJr ð7Þ

where Di is the effective diffusivity for component i, and k the effec-
tive thermal conductivity. The initial and boundary conditions with
external resistances are

t ¼ 0; wS ¼ wSo; wB ¼ wBo; T ¼ To ð8Þ

y ¼ �L; q
@wS

@y
¼ kgS

DS
ðwSb �wSsÞ;

q
@wB

@y
¼ kgB

DB
ðwBb �wBsÞ;

@T
@y
¼ hf

k
ðTb � TsÞ ð9Þ
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y ¼ 0;
@wS

@y
¼ @wB

@y
¼ @T
@y
¼ 0 ðsymmetry conditionsÞ ð10Þ

where kgi is the extra particle mass transfer coefficient for compo-
nent i, and hf is the heat transfer coefficient, indices b refers to bulk
fluid conditions, and L is the half thickness of the slab. Eq. (9) rep-
resents the external mass and heat transfer resistances, respec-
tively. Diffusion may reduce averaged rates relative to that
obtained if the concentration was everywhere wSs and wBs. This lim-
itation is known as the effectiveness factor [16,17].

3. Phenomenological equations

Reaction-transport systems represent open and nonequilibrium
systems with thermodynamic forces of temperature gradient, con-
centration gradient, and affinity. For the chemical reaction-trans-
port system considered, the local rate of energy dissipation [3–
6,12] due to local rate of entropy production U (U =

P
ijiXi) is

TU ¼ Jq � r ln T � jS � ðrlSÞT;P � jB � ðrlBÞT;P þ JrA P 0 ð11Þ

where ðrliÞT;P ¼
Pn�1

i¼1 ð@li=@wiÞrwi, li is the chemical potential of
species i, and A is the affinity (A = �

P
mili). Eq. (11) consists of scalar

processes of chemical reactions and vectorial processes of heat and
mass flows, while it excludes pressure, viscous, electrical, and mag-
netic effects.

We have a linear relationship between the reaction velocity and
the chemical affinity for an elementary reaction if |A/(RT)|� 1
[5,6,14,15]

Jr ¼ LrrA ¼
kf qwS;eq

R
A ð12Þ

where kf is the forward reaction rate, and the coefficient Lrr with the
Arrhenius equation is defined by Lrr ¼ qk0 expð�Ef =RTÞwS;eq

� �
=R. Eq.

(12) indicates that the value of Lrr is dependent on the rate constant
and consequently on the equilibrium concentration wS,eq and the
amount of chemical catalyst. Some selected biological pathways oc-
cur at near GE conditions [14], and for some chemical reactions the
formalism of LNET can be used in wider ranges than usually ex-
pected [21].

Eq. (11) identifies the independent conjugate flows ji and forces
Xk to be used in the linear phenomenological equations ji =

P
kLikXk

when the system is in the vicinity of GE [5,18–20]. For an n-com-
ponent system and with nr-number of chemical reactions with
mass flows relative to center of mass, the phenomenological equa-
tions for heat, mass, and reaction flows become

�Jq ¼ Lqqr ln T þ
Xn�1

j¼1

Xn�1

k¼1

Xn�1

l¼1

Lqjfjklklrwl � LqrA ð13Þ

�ji ¼ Liqr ln T þ
Xn�1

j¼1

Xn�1

k¼1

Xn�1

l

Lijfjklklrwl � LirA ð14Þ

�Jri ¼ Lrq � r ln T þ
Xn�1

j¼1

Xn�1

k¼1

Xn�1

l¼1

fjklklLrj � rwl �
Xnr

m

LimAm ð15Þ

For the reaction-transport system with three components of S,
B, and P, Eqs. (13)–(15) reduce to

�Jq ¼ Lqqr ln T þ ðLqSkSS þ LqBkBSÞrwS þ ðLqSkSB þ LqBkBBÞrwB � LqrA

ð16Þ

�jS¼LSqrlnTþðLSSkSSþLSBkBSÞrwSþðLSSkSBþLSBkBBÞrwB�LSrA

ð17Þ

�jB ¼ LBqr ln T þ ðLBSkSS þ LBBkBSÞrwS þ ðLBSkSB þ LBBkBBÞrwB � LBrA

ð18Þ
�Jr ¼Lrq �rlnTþðLrSkSSþLrBkBSÞ �rwSþðLrSkSBþLrBkBBÞ �rwB�LrrA

ð19Þ

where

kij ¼
X2

k¼1

fiklkj

The coefficients Lij represent the phenomenological coefficients,
which are related by various constraints, such as Onsager’s reci-
procity, Gibbs–Duhem equation at equilibrium, and the choice of
reference frame for diffusivities. Some of the phenomenological
coefficients Lik may be identified using Fick’s, Fourier’s, and the
mass action laws [5]. The cross coefficients (LSq or LqS) may be rep-
resented by the Soret coefficient (sT), or the thermal diffusion coef-
ficient (DT), which are related to each other by sTDS = DTo. The Soret
coefficient changes in the range 10�2–10�3 1/K for gases, nonelec-
trolytes, and electrolytes, however it might be larger for polymer
solutions [6,15]. We may define two new effective diffusion coeffi-
cients of (DT and DD) that are related to the thermal diffusion
DT = LSqT�2 and the Dufour effect DD ¼ LqSkS=T . For LqS = LSq, we have
DD ¼ DT TkS, which is proved experimentally [15]. For liquids, the
diffusion coefficient D is of the order of 10�5 cm2/s, and the ther-
mal diffusion coefficient DT is of the order of 10�8–10�10 cm2/
(s K). For gases, the order of magnitude for D and DT is 10�1 cm2/
s, and 10�4–10�6 cm2/(s K), respectively [15,18–21].

Eqs. (16)–(19) can be modified with some transport coefficients
[4–6,18–20], and we have

�Jq ¼ krT þ qDDSrwS þ qDDBrwB � LqrA ð20Þ

�jS ¼ DTSrT þ qDSrwS þ qDSBrwB � LSrA ð21Þ

�jB ¼ DTBrT þ qDBSrwS þ qDBrwB � LBrA ð22Þ

�Jr ¼ L0rq � rT þ L0rS � rwS þ L0rB � rwB � LrrA ð23Þ
where

k ¼ Lqq=T; qDil ¼
X2

j¼1

Lijkjl ¼
X2

j¼1

X2

k¼1

Lijfjklkl;

DDS ¼ Q �SDSS þ Q �BDBS; DDB ¼ Q �SDSB þ Q�BDBB DTS ¼ LSq
1
T
;

DTB ¼ LBq
1
T
; L0rS ¼ LrSkSS þ LrBkBS; L0rB ¼ LrSkSB þ LrBkBB;

L0rq ¼ Lrq
1
T

Here we assumed that DS = DB and DSB = DBS. These equations
are based on the chain rule and the Gibbs–Duhem equation at con-
stant temperature and pressure rTln ¼ �

Pn�1
i ðwi=wnÞrTli. Q �i is

the heat of transport defined by Q �i ¼ ðJq=JiÞrT¼0; jk–i¼0, and is a mea-
sure of local heat exchange necessary to maintain isothermal con-
ditions during diffusion of component i. The two independent
heats of transport in terms of phenomenological coefficients are

Q �S ¼ ðLqSLBB � LqBLBSÞ=U ð24Þ
Q�B ¼ ðLqBLSS � LqSLSBÞ=U ð25Þ

where

U ¼ LSSLBB � LSBLBS

If we can control the temperature and concentration gradients,
the coupling coefficients between the chemical reaction and the
flows of mass and heat may be determined by the following
relations

LrS ¼ LSr ¼
jS

A

� �
rwS¼0;rwB¼0;rT¼0

¼ @jS

@A

� �
rwS ;rwB ;rT

ffi DjS

DA

� �
rwS ;rwB ;rT
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LrB ¼ LBr ¼
jB

A

� �
rwS¼0;rwB¼0;rT¼0

¼ @jB

@A

� �
rwS ;rwB ;rT

ffi DjB

DA

� �
rwS ;rwB ;rT

Lrq ¼ Lqr ¼
Jq

A

� �
rwS¼0;rwB¼0;rT¼0

¼
@Jq

@A

� �
rwS ;rwB ;rT

ffi
DJq

DA

� �
rwS ;rwB ;rT

Eqs. (20)–(23) reduce to the following conductance matrix form
of linear phenomenological equations

�J ¼ LX ð26Þ

where

J ¼

Jq

jS

jB

Jr

0
BBB@

1
CCCA; L ¼

L011 L012 L013 L014

L021 L022 L023 L024

L031 L032 L033 L034

L041 L042 L043 L044

2
6664

3
7775; X ¼

rT

rwS

rwB

A

0
BBB@

1
CCCA

Onsager’s reciprocal relations states that L0ij ¼ L0ji if ji and jj have
the same parity under time reversal, and L0ij ¼ �L0ji if ji and jj have
the opposite parity. In the absence of pertinent symmetries or
invariances, all types of cross-couplings are possible and lead to
nonvanishing cross coefficients L0ij–0 ði–jÞ. If the structure of the
system is invariant with respect to some or all of the orthogonal
transformations, then the invariance will eliminate certain cross-
couplings and their cross-coefficients will vanish. If these symme-
tries are not exact then the corresponding cross-couplings would
be weak and negligible.

As Eqs. (20)–(23) show, for the nonvanishing cross coefficients
L0ij–0 ði–jÞ, all the forces contribute for each flow, and hence the
thermodynamic couplings exist between vectorial processes of
heat and mass flows, and between vectorial and scalar processes
of reaction and transport. Coupling between vectorial and scalar
processes is possible only in an anisotropic medium according to
the Curie–Prigogine principle [15], which states that ‘‘a scalar
thermodynamic force such as chemical affinity, which has the
high symmetry of isotropy, cannot cause a diffusion flow, which
has lower symmetry because of its directionality.” Generally,
irreversible processes of different tensorial character do not cou-
ple with each other in an isotropic medium. Therefore, the cross-
coefficients between the chemical reaction and transport pro-
cesses of heat and mass LSr, LrS, Lqr, and Lrq would vanish in an
isotropic medium, or would have vectorial character due to mor-
phology of the interface, or due to compartmental structure caus-
ing an anisotropic character. For example, in active transport in
biological cells, the hydrolysis of ATP is coupled with the flow
of sodium ions outside of the cell. The flow direction is con-
trolled by the structure of the membrane and thermodynamic
coupling mechanisms in mitochondria. The medium may be lo-
cally isotropic, although it is not spatially homogenous. In this
case, the coupling coefficients are associated with the whole sys-
tem [11,12].
4. Thermodynamically coupled reaction-transport systems

By substituting Eqs. (20)–(23) into Eqs. (1)–(3), we have
[5,6,20]

q
@wS

@t
¼ r � ðDTSrT þ qDSrwS þ qDSB � rwB � LSrAÞ

þ ðL0rq � rT þ L0rS � rwS þ L0rB � rwB � LrrAÞ ð27Þ

q
@wB

@t
¼ rðDTBrT þ qDBSrwS þ qDBrwB � LBrAÞ

þ ðL0rq � rT þ L0rS � rwS þ L0rB � rwB � LrrAÞ ð28Þ
qcp
@T
@t
¼ r � ðkrT þ qDDSrwS þ qDDBrwB � LqrAÞ

þ ð�DHrÞð�L0rq � rT � L0rS � rwS � L0rB � rwB þ LrrAÞ

þ qðHE
SSDSSr2wS þ ðHE

BBDBS þ HE
SSDSBÞrwS � rwB

þ HE
BBDBBr2wBÞ ð29Þ

Eqs. (27)–(29) are valid for systems containing no pressure gradi-
ents, no surface effects, and no gravitational or other external body
forces. These relationships represent the mathematically and ther-
modynamically coupled chemical reaction-transport systems. The
thermodynamic coupling consists the coupling between vectorial
processes of transport (heat and mass flows) as well as between sca-
lar (chemical reactions) and transport processes. Therefore, the
effective transport coefficients become the elements of related effec-
tive transport coefficient tensors. When ideal mixing of components
is considered, excess enthalpy will vanish in Eq. (3) and Eq. (29).

Eqs. (27)–(29) also represent the evolution equations in time
and space for thermodynamically and mathematically coupled
transport and chemical reaction systems. They allow the stability
analysis to be performed to predict possible bifurcation in time
and space depending upon the flows, forces, transport coefficients,
and kinetic parameters beside the other controlling parameters,
such as the distance from GE.

Eqs. (27)–(29) can be reduced to some specific coupled phenom-
ena cases. If we neglect the thermodynamic coupling between
chemical reaction and transport processes, all the cross-coefficients
LSr, LrS, LBr, LrB, Lqr, and Lrq vanish, and Eqs. (27)–(29) reduces to

q
@wS

@t
¼ r � ðDTSrT þ qDSrwS þ qDSBrwBÞ � LrrA ð30Þ

q
@wB

@t
¼ r � ðDTBrT þ qDBSrwS þ qDBrwBÞ � LrrA ð31Þ

qcp
@T
@t
¼ r � ðkrT þ qDDSrwS þ qDDBrwBÞ þ ð�DHrÞLrrA ð32Þ

Here, Eqs. (30)–(32) neglect the excess enthalpy, HE.

4.1. Special case: one-dimensional reaction-transport in a simple slab

For a one-dimensional transport with constant density q in a
simple slab geometry, Eqs. (30)–(32) become

@qS

@t
¼ DTS

@2T
@y2

 !
þ DS

@2qS

@y2

 !
þ DSB

@2qB

@y2

 !
� k0 exp � E

RT

� �
qS

ð33Þ

@qB

@t
¼ DTB

@2T
@y2

 !
þ DBS

@2qS

@y2

 !
þ DB

@2qB

@y2

 !
� k0 exp � E

RT

� �
qS

ð34Þ

qcp
@T
@t
¼ k

@2T
@y2

 !
þ DDS

@2qS

@y2

 !
þ DDB

@2qB

@y2

 !

þ ð�DHrÞk0 exp � E
RT

� �
qS ð35Þ

The initial and boundary conditions are the same as in Eqs. (8)–
(10).
4.2. Maximum temperature difference

By eliminating the reaction terms in Eqs. (33) and (35) at steady
state, and integrating once from the pellet center (L = 0) to surface
with the boundary conditions, we have



Table 1
Some transport, kinetic, surface, and external resistance parameters for the reaction-
diffusion system with heat effects [4,5,17].

Parameters Parameters
used in
Fig. 1

Parameters
used in
Fig. 2

Lower bound
of parameters
[17]

Upper bound
of parameters
[17]

b = (�DHr)DSqSs/
(kTs)

0.1 0. 1 0 (exothermic) 1

c = E/(RTs) 10 10 0 60
Le = ke/(qCpDS) 0.01 0.01 0.001 100
Sh = kgL/DS 5 5 0.1 5000
Nu = hfL/k 0.25 0.25 0.01 50
Sh/Nu 20 20 1 2000
DaS = L2k0exp[(E/

(RTs)]/DS

0.01 0.01 0.005 100

eS ¼ DTS Ts
DSqSs

0.0001 0.01
eB ¼ DTBTs

DSqSs
0.0001 0.01

uS = DSB/DS 1 1
uB = DBS/DS 1 1
d = DB/DS 1 1
xS ¼ DDSqSs

kTs
0.0001 0.01

xB ¼ DDBqSs
kTs

0.0001 0.01
hSb = qSb/qSs 1.1 1.1
hBb = qBb/qSs = hBb 1.1 1.1
/b = Tb/Ts 0.98 0.98
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DS þ
DDS

ð�DHrÞ

� �
dqS

dy

����
L

þ DSB þ
DDB

ð�DHrÞ

� �
dqB

dy

����
L

þ DTS þ
k

ð�DHrÞ

� �
dT
dy

����
L

¼ 0 ¼ kgS

DS
DS þ

DDS

ð�DHrÞ

� �
ðqSb � qSsÞ

�

þ DSB þ
DDB

ð�DHrÞ

� �
ðqBb � qBsÞ

�
þ DTS þ

k
ð�DHrÞ

� �
hf

k
ðTb � TsÞ

ð36Þ

From the right-hand side, we have the temperature difference be-
tween surface and bulk fluid temperatures by assuming that
kgS = kgB = kg and kS = kB = k

Ts � Tb ¼
Sh
Nu

� �
½a1ðqSb � qSsÞ þ a2ðqBb � qBsÞ� ð37Þ

where

a1 ¼
DSð�DHrÞ þ DDS

DTSð�DHrÞ þ k
; a2 ¼

DSBð�DHrÞ þ DDB

DTSð�DHrÞ þ k

and Sh and Nu are the Sherwood and Nusselt numbers, respectively

Sh ¼ kgL
DS

; Nu ¼ hf L
k

After the second integration of Eq. (36) from the pellet center to sur-
face, and some arrangements, the total temperature difference
(T � Tb) becomes

T � Tb ¼ a1ðqSs � qSÞ þ a2ðqBs � qBÞ þ ðTs � TbÞ ð38Þ

The first two terms of the right-hand side represent the internal
temperature difference, while the third term is the external temper-
ature difference. Substituting Eq. (37) into Eq. (38), we have

T � Tb ¼ a1 ðqSs � qSÞ þ
Sh
Nu
ðqSb � qSsÞ

	 


þ a2 ðqBs � qBÞ þ
Sh
Nu
ðqBb � qBsÞ

	 

ð39Þ

By multiplying the both side of Eq. (39) by (qSs/Ts) and after arrang-
ing, we have

/� /b ¼ b0Sð1� hSÞ þ b0Bð1� hBÞ þ
Sh
Nu
ðhSb � 1Þðb0S þ b0BÞ ð40Þ

where

/ ¼ T
Ts
; /b ¼

Tb

Ts
; hS ¼

qS

qSs
; hB ¼

qB

qSs
; hSb ¼

qSb

qSs
¼ qBb

qSs
;

qSs ¼ qBs; b0S ¼
DSð�DHrÞ þ DDS

DTSð�DHrÞ þ k

� �
qSs

Ts
;

b0B ¼
DSBð�DHrÞ þ DDB

DTSð�DHrÞ þ k

� �
qSs

Ts

Eq. (40) is the relationships between the dimensionless tempera-
ture / and compositions hS and hB at steady state and with thermo-
dynamic couplings. The maximum temperature difference occurs
when hS = 0 and hB = 0, and Eq. (40) becomes

/max � /b ¼ 1þ Sh
Nu
ðhSb � 1Þ

� �
ðb0S þ b0BÞ ð41Þ

The value of b0i is a measure of nonisothermal effects at surface
conditions for component i when heat and mass flow are ther-
modynamically coupled. Eq. (41) contains the cross effects due
to thermodynamic couplings as well as the external resistance
effects on the maximum temperature difference in a catalyst
pellet.
5. Some representative solutions and discussions

Eqs. (33)–(35) reduce to the following dimensionless forms

@hS

@s
¼ eS

@2/
@z2 þ

@2hS

@z2 þuS
@2hB

@z2 � DaShS exp c 1� 1
/

� �	 

ð42Þ

@hB

@s
¼ eB

@2/
@z2 þuB

@2hS

@z2 þ d
@2hB

@z2 � DaShB exp c 1� 1
/

� �	 

ð43Þ

1
Le

@/
@s
¼ @

2/
@z2 þxS

@2hS

@z2 þxB
@2hB

@z2 þ DaSbhS exp c 1� 1
/

� �	 

ð44Þ

where

z ¼ y
L
; s ¼ DSt

L2 ; c ¼ E
RTs

; Le ¼ ke=qCp

DS
;

DaS ¼
L2k0 expðE=RTsÞ

DS
; b ¼ ð�DHrÞDSqSs

kTs
; eS ¼

DTSTs

DSqSs
;

eB ¼
DTBTs

DSqSs
; uS ¼

DSB

DS
; uB ¼

DBS

DS
; d ¼ DB

DS
; xS ¼

DDSqSs

kTs
;

xB ¼
DDBqSs

kTs

The initial and boundary conditions become

s ¼ 0 hS ¼ hSo hB ¼ hBo / ¼ /o

z ¼ �1; s > 0 @hS
@z ¼ ShðhSb � 1Þ; @hB

@z ¼ ShðhBb � 1Þ;
@/
@z ¼ Nuð/b � 1Þ

z ¼ 0; s > 0; @hS
@z ¼

@hB
@z ¼

@/
@z ¼ 0

ð45Þ

Here the coefficients eS, eB, xS, xB are the cross effects representing
the thermodynamic couplings between heat and mass flows of spe-
cies S and B, respectively. Dai is the Damköhler number for compo-
nent i, and measures the intrinsic rates of the reactions relative to
that of the diffusions.

Eqs. (42)–(45) reduce to the following stationary equations with
thermodynamically coupled heat and mass flows

eS
@2/
@z2 þ

@2hS

@z2 þuS
@2hB

@z2 � DaShS exp c 1� 1
/

� �	 

¼ 0 ð46Þ
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eB
@2/
@z2 þuB

@2hS

@z2 þ d
@2hB

@z2 � DaShB exp c 1� 1
/

� �	 

¼ 0 ð47Þ

@2/
@z2 þxS

@2hS

@z2 þxB
@2hB

@z2 þ DaSbhS exp c 1� 1
/

� �	 

¼ 0 ð48Þ
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Fig. 1. Dimensionless compositions and temperatures in time and space with eS = eB

component S, (b) behavior of component B, (c) behavior of temperature, (d) behavior of co
at s = 1.
The MATLAB is used to solve the thermodynamically and math-
ematically coupled systems of Eqs. (42)–(45) by using the param-
eters listed in Table 1, which also lists lower and upper bounds for
some of the parameters [17]. The chemical reaction is slow, as
DaS = 0.01. Figs. 1 and 2 display the dynamic behavior of the mass
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mponent S at s = 1, (e) behavior of component B at s = 1, (f) behavior of temperature
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concentration and temperature surfaces at two different set of
cross coefficients eS = eB = 0.0001 and eS = eB = 0.01, and
xS = xB = 0.0001 and xS = xB = 0.01 while keeping all the other
parameters the same as listed in Table 1. Therefore, Figs. 1 and 2
display the effects of thermodynamic couplings between heat
and mass flows, and compares such effects at two levels of cross
coefficients of e and x. Here, for the purpose of comparison, it
was assumed that eS = eB = xS = xB at the upper and lower limits
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Fig. 2. Dimensionless compositions and temperatures in time and space with eS = eB = 0.0
(b) behavior of component B, (c) behavior of temperature, (d) behavior of component S
as well as DS = DB; obviously the cross coefficients e and x as well
as the diffusion coefficients as DS and DB may be different. Figs. 1d–
f and 2d–f display the mass concentrations and temperatures at
the end point where the dimensionless time s = 1.

The surfaces of temperatures and mass concentrations depend
on the values of coefficients representing the thermodynamic cou-
plings and the assigned values of other parameters. As Figs. 1c and
2c show, for the higher values of cross coefficients of e, and x, the
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value of / increases slightly (form 1.0006 approximately to 1.0011)
and the nonequilibrium region (nonisothermal) shrinks slightly at
s = 1. The changes in the mass concentrations are marginal with
the changes of the cross coefficients and with the assigned values
for parameters and coefficients. Due to the thermodynamic cou-
plings hence the cross effects, there are excessive numbers of
parameters controlling the behavior of temperatures and concen-
trations. Therefore, the results very much depend upon the magni-
tude and accuracy of the various parameters and coefficients used
for internal and external parts of the system. The representative
solutions are obtained based on several assumptions, such as equal
diffusivities and surface concentrations for the components S and B.
Therefore, the results are representative and approximate, and
based on the values of parameters listed in Table 1.

6. Conclusions

The balance equations are derived for thermodynamically and
mathematically coupled heat and mass flows in a chemical reac-
tion-transport system with external resistances to heat and mass
flows. There are no thermodynamic couplings between chemical
reaction and transport processes of heat and mass flows. These
modeling equations are based on the linear nonequilibrium ther-
modynamics approach assuming that the system is in the vicinity
of global equilibrium. They are capable of displaying the cross ef-
fects due to thermodynamic couplings on the mass compositions
and temperatures as well as the effects of external resistances in
time and space. The modeling equations have revealed some un-
ique cross coefficients, which control thermodynamic couplings
between the vectorial processes of heat and mass flows. These
coefficients combine some measurable kinetic parameters, trans-
port coefficients, and boundary values. Determinations of these
coefficients may lead to a better understanding of the effects of
thermodynamic couplings in reaction-transport phenomena.
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